# Gift wrapping algorithm # https://en.wikipedia.org/wiki/Gift_wrapping_algorithm # Date: 2021-11-16 import matplotlib.pyplot as plt import math import random def generate_points(n=100): X = [] Y = [] for i in range(n): X.append(random.random()) Y.append(random.random()) plt.plot(X, Y, '.') return [(X[i],Y[i]) for i in range(n)] # def angle(p1, p2, p3): # p1, p2, p3 = p3, p2, p1 # print(p1, p2, p3) # if p1 == p3: return math.pi # x1, y1 = p2[0]-p1[0], p2[1]-p1[1] # x2, y2 = p3[0]-p2[0], p3[1]-p2[1] # d = x1*y2-y1*x2 # n1 = math.hypot(x1, y1) # n2 = math.hypot(x2, y2) # if d == 0 or n1*n2 == 0: # l = x1/x2 # if l >= 0: return 0 # return math.pi # dp = x1*x2 + y1*y2 # c = math.acos(dp/(n1*n2)) # b = (c if d > 0 else -c) % 2*math.pi # return math.pi*2-b def cross_product(u, v): x1, y1 = u x2, y2 = v n1 = math.hypot(x1, y1) n2 = math.hypot(x2, y2) return (x1*y2-x2*y1) # def angle(p1, p2, p3): # x1, y1 = p2[0]-p1[0], p2[1]-p1[1] # x2, y2 = p3[0]-p2[0], p3[1]-p2[1] # a = (math.atan2(y1, x1) - math.atan2(y2, x2)) # if a < 0: # a = math.pi # return a def gift_wrapping(points): convex_hull = [] x_sorted = list(sorted(points, key=lambda point: point[0])) left_most = x_sorted[0] point_on_hull = left_most endpoint = None while endpoint != left_most: convex_hull.append(point_on_hull) endpoint = points[0] for point in points: cp = cross_product(( endpoint[0] - point_on_hull[0], endpoint[1] - point_on_hull[1] ), ( point[0] - point_on_hull[0], point[1] - point_on_hull[1] )) if endpoint == point_on_hull or cp < 0: endpoint = point point_on_hull = endpoint return convex_hull def draw_points(points, with_edge=False): X, Y = [], [] for p in points: X.append(p[0]) Y.append(p[1]) plt.plot(X, Y, '.' if not with_edge else '') pts = generate_points(50) #pts = [(0.1, 1), (0.2, 0.4), (0.2, 0.15), (0.4, 0.25), (0.6, 0.8), (0.55, 0.3), (0.7, 0.2), (0.5, 0.5), (0.4, 0.7), (0.3, 0.1)] print(pts) draw_points(pts) hull=gift_wrapping(pts) draw_points(hull+[hull[0]], True) plt.show()